R tools such as dplyr and tidyr can be used to summarise data (e.g. add rain observations to obtain monthly and annual cumulative amounts). The three libraries are first loaded.
library(aimsir17)
library(dplyr)
library(tidyr)
library(ggplot2)
We can show eirgrid’s energy data from 2017, which is recorded at 15 minute intervals.
eirgrid17
## # A tibble: 35,040 x 15
## year month day hour minute date NIGeneration NIDemand
## <dbl> <dbl> <int> <int> <int> <dttm> <dbl> <dbl>
## 1 2017 1 1 0 0 2017-01-01 00:00:00 889. 776.
## 2 2017 1 1 0 15 2017-01-01 00:15:00 922. 770.
## 3 2017 1 1 0 30 2017-01-01 00:30:00 908. 761.
## 4 2017 1 1 0 45 2017-01-01 00:45:00 919. 743.
## 5 2017 1 1 1 0 2017-01-01 01:00:00 882. 749.
## 6 2017 1 1 1 15 2017-01-01 01:15:00 849. 742.
## 7 2017 1 1 1 30 2017-01-01 01:30:00 843. 726.
## 8 2017 1 1 1 45 2017-01-01 01:45:00 809. 709.
## 9 2017 1 1 2 0 2017-01-01 02:00:00 797. 697.
## 10 2017 1 1 2 15 2017-01-01 02:15:00 755. 684.
## # … with 35,030 more rows, and 7 more variables: NIWindAvailability <dbl>,
## # NIWindGeneration <dbl>, IEGeneration <dbl>, IEDemand <dbl>,
## # IEWindAvailability <dbl>, IEWindGeneration <dbl>, SNSP <chr>
The variables stored for the eirgrid data include:
glimpse(eirgrid17)
## Rows: 35,040
## Columns: 15
## $ year <dbl> 2017, 2017, 2017, 2017, 2017, 2017, 2017, 201…
## $ month <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ hour <int> 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, …
## $ minute <int> 0, 15, 30, 45, 0, 15, 30, 45, 0, 15, 30, 45, …
## $ date <dttm> 2017-01-01 00:00:00, 2017-01-01 00:15:00, 20…
## $ NIGeneration <dbl> 889.005, 922.234, 908.122, 918.802, 882.441, …
## $ NIDemand <dbl> 775.931, 770.233, 761.186, 742.718, 749.238, …
## $ NIWindAvailability <dbl> 175.065, 182.866, 169.796, 167.501, 174.094, …
## $ NIWindGeneration <dbl> 198.202, 207.765, 193.103, 190.757, 195.790, …
## $ IEGeneration <dbl> 3288.57, 3282.12, 3224.27, 3171.27, 3190.28, …
## $ IEDemand <dbl> 2921.44, 2884.19, 2806.38, 2718.77, 2682.91, …
## $ IEWindAvailability <dbl> 1064.79, 965.60, 915.35, 895.38, 1028.03, 114…
## $ IEWindGeneration <dbl> 1044.72, 957.74, 900.46, 870.81, 998.31, 1119…
## $ SNSP <chr> "28.4%", "26.4%", "25.2%", "24.7%", "27.9%", …
The given energy demand for a particular day can be viewed.
mar17 <- filter(eirgrid17,day==17, month==3)
ggplot(mar17,aes(x=date,y=IEDemand))+geom_point()+geom_line()
The wind power generated for a month can be viewed
mar <- filter(eirgrid17,month==3)
ggplot(mar,aes(x=date,y=IEWindGeneration))+geom_point()+geom_line()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.